Lattice QCD with the Stochastic LapH Method

Andrew D. Hanlon University of Pittsburgh

HUGS 2015

Overview

- Calculating temporal correlators in lattice QCD requires inverting the large but sparse Dirac matrix.
- We can exploit translation invariance for single hadron operators to fix the position of the source hadron in 2-point correlators (point-to-all method).
- □ But, isoscalar mesons and two-hadron operators present a serious challenge (require all-to-all or many-to-many quark propagators).
- □ The stochastic LapH method is an efficient method for approximating these quark propagators.

Temporal Correlators from Path Integrals

 \Box stationary-state energies are extracted from $N\times N$ Hermitian correlation matrix

$$C_{ij}(t) = \langle 0 | O_i(t+t_0) \overline{O}_j(t_0) | 0 \rangle$$

 \square correlators found from path integral over ψ , $\overline{\psi}$ and U fields

$$C_{ij}(t) = \frac{\int D[\overline{\psi}, \psi, U] \ O_i(t+t_0) \ \overline{O}_j(t_0) \ \exp(-\overline{\psi}K[U]\psi - S_G[U])}{\int D[\overline{\psi}, \psi, U] \ \exp(-\overline{\psi}K[U]\psi - S_G[U])}$$

 \Box K[U] is the fermion Dirac matrix

integration over quarks can be done exactly

$$\int D[\overline{\psi}, \psi] F[\overline{\psi}, \psi] \exp(-\overline{\psi} K \psi) = W[K^{-1}(U)] \det K$$

Monte Carlo Estimate of Path Integrals

□ correlators now have the following form

$$C_{ij}(t) = \frac{\int D[U] \, \det K \, W[K^{-1}(U)] \, \exp(-S_G[U])}{\int D[U] \, \det K \, \exp(-S_G[U])}$$

 \square use Monte Carlo methods to integrate over U

- □ generate set of gauge configurations $\{U_i\}$ according to $P[U] = \frac{\exp(-S_G[U]) \prod_{j=1}^{N_f} \det K_j[U]}{\mathcal{Z}}$
- \Box γ_5 -Hermiticity of K guarantees det K is real, and $m_u = m_d$ makes det $K_u = \det K_d$
- $\Box \det K_s$ is not guaranteed to be positive, but it usually is
- □ inclusion of det K and evaluation of $K^{-1}[U]$ are computationally expensive

Quark Propagation

 \Box quark propagator is inverse K^{-1} of Dirac matrix

- rows/columns involve lattice site, spin, color
- \square very large $N_{\rm tot} \times N_{\rm tot}$ matrix for each flavor

 $N_{\rm tot} = N_{\rm site} N_{\rm spin} N_{\rm color}$

 \square for $32^3 \times 256$ lattice, $N_{\rm tot} \sim 101$ million

- \Box not feasible to compute (or store) all elements of K^{-1}
- \Box solve linear systems Kx = y for source vectors y
- translation invariance can drastically reduce number of source vectors y needed
- multi-hadron operators and isoscalar mesons require large number of source vectors y

Quark Line Diagrams

temporal correlations involving our two-hadron operators need

- slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
- sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!

Stochastic Estimation of Quark Propagator

- \Box Need an approximation on the inverse of the Dirac matrix K[U]
- \Box Use noise vectors η such that $E(\eta_i) = 0$ and $E(\eta_i \eta_j^*) = \delta_{ij}$
- $\Box Z_4 = \{+1, -1, +i, -i\}$ noise
- \Box Generate N_R noise vectors $\eta^{(r)}$ and solve $K[U]X^{(r)} = \eta^{(r)}$
- $\Box \text{ Then } E(X_i \eta_j^*) = E(K_{ik}^{-1} \eta_k \eta_j^*) = K_{ik}^{-1} E(\eta_k \eta_j^*) = K_{ij}^{-1}$

$$\implies K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

 \Box Suppose $\eta_j = \sum_{s=1}^N \eta_j^{[s]}$, where $\eta_j^{[s]} = \eta_j \delta_{js}$ (no sum over j), then

$$\sum_{s=1}^{N} X_i^{[s]} \eta_j^{[s]*} = K_{ij}^{-1} \eta_j \eta_j^* = K_{ij}^{-1},$$

because $Var(\eta_i \eta_j^*) = 1 - \delta_{ij}$

Variance Reduction through Noise Dilution

 \Box Introduce a complete set of projection operators $P^{(a)}$:

$$\begin{split} P^{(a)}P^{(b)} &= \delta^{ab}P^{(a)}, \quad \sum_{a}P^{(a)} = 1, \quad P^{(a)\dagger} = P^{(a)}\\ \eta^{[a]}_{k} &= P^{(a)}_{kk'}\eta_{k'}, \qquad \eta^{[a]*}_{j} = P^{(a)*}_{jj'}\eta^{*}_{j'} \end{split}$$

 $\hfill\square$ Define $X^{[a]}$ to be the solution of $K_{ik}X_k^{[a]}=\eta_i^{[a]},$ then

$$\sum_{a} E(X_i^{[a]} \eta_j^{[a]*}) = K_{ik}^{-1} \sum_{a} E(\eta_k^{[a]} \eta_j^{[a]*}) = K_{ik}^{-1} \sum_{a} P_{kj}^{(a)} = K_{ik}^{-1}$$

$$\implies K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_a X^{(r)[a]} \eta_j^{(r)[a]*}$$

 \Box An improvement because $Var(\sum_a \eta_k^{[a]} \eta_j^{[a]*}) < Var(\eta_k \eta_j^*)$

Laplacian Heaviside (LapH) Smearing

- why bother finding propagator to/from high energy modes?
- □ use the N_v lowest eigenvectors of the covariant Laplacian to define the LapH subspace

Excited States from Correlation Matrices

□ in finite volume, energies are discrete

$$C_{ij}(t) = \sum_{n} Z_i^{(n)} Z_j^{(n)*} e^{-E_n t}, \qquad Z_j^{(n)} = \langle 0 | O_j | n \rangle$$

not practical to do fits using above form

□ define new correlation matrix $\widetilde{C}(t)$ using a single rotation $\widetilde{C}(t) = U_{t}^{\dagger} C(t) = \frac{1}{2} C(t) = \frac{1}{2} C(t) = \frac{1}{2} U_{t}^{\dagger}$

$$\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$$

- \Box columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- \Box choose au_0 and au_D large enough so $\widetilde{C}(t)$ diagonal for $t > au_D$

ffective energies

$$\widetilde{m}_{\alpha}^{\text{eff}}(t) = \frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha\alpha}(t)}{\widetilde{C}_{\alpha\alpha}(t + \Delta t)} \right)$$

tend to N lowest-lying stationary state energies in a channel 2-exponential fits to $\widetilde{C}_{\alpha\alpha}(t)$ yield energies E_{α} and overlaps $Z_i^{(n)}$

Operator Smearing and Displacements

- Smearing quark fields reduces the excited state contamination
- Displacing quark fields captures extended structure of hadrons
- Smearing gauge-link fields reduces the error for displaced operators

Conclusion

□ stochastic LapH method works very well

- allows evaluation of all needed quark-line diagrams
- does so efficiently and with low error

Questions?

Building Blocks for Single-hadron Operators

 \Box building blocks: covariantly-displaced LapH-smeared quark fields \Box stout links $\widetilde{U}_j(x)$

□ Laplacian-Heaviside (LapH) smeared quark fields

$$\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x,y) \ \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$$

 $lacksymbol{\square}$ 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}

□ displaced quark fields:

$$q^{A}_{a\alpha j} = D^{(j)}\widetilde{\psi}^{(A)}_{a\alpha}, \qquad \overline{q}^{A}_{a\alpha j} = \widetilde{\overline{\psi}}^{(A)}_{a\alpha}\gamma_{4} D^{(j)\dagger}$$

 \Box displacement $D^{(j)}$ is product of smeared links:

 $D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x',\ x+d_{p+1}}$

to good approximation, LapH smearing operator is

$$\mathcal{S} = V_s V_s^{\dagger}$$

lacksquare columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

Extended Operators for Single Hadrons

🗆 quark displacements build up orbital, radial structure

 $\begin{array}{c} \square \mbox{ group-theory projections onto irreps of lattice symmetry group} \\ \overline{M}_l(t) = c^{(l)*}_{\alpha\beta} \ \overline{\Phi}^{AB}_{\alpha\beta}(t) \qquad \qquad \overline{B}_l(t) = c^{(l)*}_{\alpha\beta\gamma} \ \overline{\Phi}^{ABC}_{\alpha\beta\gamma}(t) \end{array}$

 \square definite momentum p, irreps of little group of p

Two-hadron Operators

our approach: superposition of products of single-hadron operators of definite momenta

$$c^{I_{3a}I_{3b}}_{\boldsymbol{p}_a\lambda_a; \ \boldsymbol{p}_b\lambda_b} \ B^{I_aI_{3a}S_a}_{\boldsymbol{p}_a\Lambda_a\lambda_ai_a} \ B^{I_bI_{3b}S_b}_{\boldsymbol{p}_b\Lambda_b\lambda_bi_b}$$

 \square fixed total momentum $oldsymbol{p} = oldsymbol{p}_a + oldsymbol{p}_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$

 \square group-theory projections onto little group of p and isospin irreps

- restrict attention to certain classes of momentum directions
 - lacksquare on axis $\pm \widehat{x}, \ \pm \widehat{y}, \ \pm \widehat{z}$
 - lacksquare planar diagonal $\pm \widehat{x} \pm \widehat{y}, \ \pm \widehat{x} \pm \widehat{z}, \ \pm \widehat{y} \pm \widehat{z}$
 - lacksquare cubic diagonal $\pm \widehat{oldsymbol{x}} \pm \widehat{oldsymbol{y}} \pm \widehat{oldsymbol{z}}$
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Testing our Two-meson Operators

- \Box (left) $K\pi$ operator in T_{1u} $I = \frac{1}{2}$ channels
- \Box (center and right) comparison with localized $\pi\pi$ operators

$$\begin{aligned} &(\pi\pi)^{A_{1g}^+}(t) &= \sum_{\boldsymbol{x}} \pi^+(\boldsymbol{x},t) \ \pi^+(\boldsymbol{x},t), \\ &(\pi\pi)^{T_{1u}^+}(t) &= \sum_{\boldsymbol{x},k=1,2,3} \Big\{ \pi^+(\boldsymbol{x},t) \ \Delta_k \pi^0(\boldsymbol{x},t) - \pi^0(\boldsymbol{x},t) \ \Delta_k \pi^+(\boldsymbol{x},t) \Big\} \end{aligned}$$

 \Box less contamination from higher states in our $\pi\pi$ operators

Quark Line Estimates in Stochastic LapH

Only need noise vectors in the LapH subspace

 $\rho_{\alpha k}(t), \qquad t = time, \alpha = spin, \ k = eigenvector number$

dilutions projectors

time indices (full for fixed src, interlace-16 for relative src)

spin indices (full)

LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

□ each of our quark lines is the product of matrices $Q_{ij} = D_i S K^{-1} \gamma_4 S D_j^{\dagger}$

displaced-smeared-diluted quark source and quark sink vectors:

 $\varrho^a(\rho) = D_j V_s P^a \rho, \qquad \varphi^a(\rho) = D_j \mathcal{S} K^{-1} \gamma_4 V_s P^a \rho$

estimate in stochastic LapH by

 $Q_{ij} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_a \varphi_i^{(r)[a]} \varrho_j^{(r)[a]\dagger}$

Quantum Numbers in Toroidal Box

- periodic boundary conditions in cubic box
 - not all directions equivalent \Rightarrow using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - \square zero momentum states: little group O_h

 $A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, \quad G_{1a}, G_{2a}, H_a, \qquad a = g, u$

 \Box on-axis momenta: little group C_{4v}

 $A_1, A_2, B_1, B_2, E, \quad G_1, G_2$

planar-diagonal momenta: little group C_{2v}

 $A_1, A_2, B_1, B_2, \quad G_1, G_2$

 \square cubic-diagonal momenta: little group C_{3v}

 $A_1, A_2, E, \quad F_1, F_2, G$

 \Box include G parity in some meson sectors (superscript + or -)

Spin Content of Cubic Box Irreps

 $\hfill\square$ numbers of occurrences of Λ irreps in subduced reps of SO(3) restricted to O

J	A_1	A_2	E	T_1	T_2	J	G_1	G_2	H
0	1	0	0	0	0	$\frac{1}{2}$	1	0	0
1	0	0	0	1	0	$ \begin{array}{c} \frac{1}{2} \\ \frac{3}{2} \\ \frac{5}{2} \end{array} $	0	0	1
2	0	0	1	0	1	$\frac{5}{2}$	0	1	1
3	0	1	0	1	1	$\frac{\overline{7}}{2}$	1	1	1
4	1	0	1	1	1	$\frac{9}{2}$	1	0	2
5	0	0	1	2	1	$\frac{11}{2}$	1	1	2
6	1	1	1	1	2	$\frac{13}{2}$	1	2	2
7	0	1	1	2	2	$\frac{15}{2}$	1	1	3

Common Hadrons

□ What hadrons will appear in the different irreps at rest?

Hadron	Irrep	Hadron	Irrep
π	A_{1u}^-	K_1	T_{1g}
ρ	T_{1u}^+	Λ, Ξ	G_{1g}
a_0	A_{1g}^+	η, η'	A_{1u}^+
b_1	T_{1g}^+	<i>K</i> *	T_{1u}
N , Σ	G_{1g}	h_1	T^{1g}
K	A_{1u}	π_1	T^{1u}
ω , ϕ	T^{1u}	Δ, Ω	H_g
f_0	A_{1g}^+		

Ensembles and Run Parameters

- plan to use three Monte Carlo ensembles
 - $\begin{array}{|c|c|c|c|c|c|c|c|} \hline & (32^3|240) \text{: } 412 \text{ configs } 32^3 \times 256, & m_{\pi} \approx 240 \text{ MeV}, & m_{\pi}L \sim 4.4 \\ \hline & (24^3|240) \text{: } 584 \text{ configs } 24^3 \times 128, & m_{\pi} \approx 240 \text{ MeV}, & m_{\pi}L \sim 3.3 \\ \hline & (24^3|390) \text{: } 551 \text{ configs } 24^3 \times 128, & m_{\pi} \approx 390 \text{ MeV}, & m_{\pi}L \sim 5.7 \end{array}$
- □ anisotropic improved gluon action, clover quarks (stout links)
- \square QCD coupling $\beta=1.5$ such that $a_s\sim 0.12$ fm, $a_t\sim 0.035$ fm
- \Box strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- \square work in $m_u = m_d$ limit so SU(2) isospin exact
- □ generated using RHMC, configs separated by 20 trajectories
- \Box stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- \Box LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - \square $N_v = 112$ for 24^3 lattices
 - \square $N_v = 264$ for 32^3 lattices