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Overview

Calculating temporal correlators in lattice QCD requires inverting
the large but sparse Dirac matrix.

We can exploit translation invariance for single hadron operators to
fix the position of the source hadron in 2-point correlators
(point-to-all method).

But, isoscalar mesons and two-hadron operators present a serious
challenge (require all-to-all or many-to-many quark propagators).

The stochastic LapH method is an efficient method for
approximating these quark propagators.



Temporal Correlators from Path Integrals

stationary-state energies are extracted from N ×N Hermitian
correlation matrix

Cij(t) = 〈0|Oi(t+ t0) Oj(t0) |0〉

correlators found from path integral over ψ, ψ and U fields

Cij(t) =
∫
D[ψ,ψ, U ] Oi(t+ t0) Oj(t0) exp(−ψK[U ]ψ − SG[U ])∫

D[ψ,ψ, U ] exp(−ψK[U ]ψ − SG[U ])

K[U ] is the fermion Dirac matrix

integration over quarks can be done exactly∫
D[ψ,ψ]F [ψ,ψ] exp(−ψKψ) = W [K−1(U)] detK



Monte Carlo Estimate of Path Integrals

correlators now have the following form

Cij(t) =
∫
D[U ] detK W [K−1(U)] exp(−SG[U ])∫

D[U ] detK exp(−SG[U ])
use Monte Carlo methods to integrate over U

generate set of gauge configurations {Ui} according to

P [U ] =
exp(−SG[U ])

∏Nf
j=1 detKj [U ]
Z

γ5-Hermiticity of K guarantees detK is real, and mu = md makes
detKu = detKd

detKs is not guaranteed to be positive, but it usually is

inclusion of detK and evaluation of K−1[U ] are computationally
expensive



Quark Propagation

quark propagator is inverse K−1 of Dirac matrix
rows/columns involve lattice site, spin, color
very large Ntot ×Ntot matrix for each flavor

Ntot = NsiteNspinNcolor

for 323 × 256 lattice, Ntot ∼ 101 million

not feasible to compute (or store) all elements of K−1

solve linear systems Kx = y for source vectors y

translation invariance can drastically reduce number of source
vectors y needed

multi-hadron operators and isoscalar mesons require large number of
source vectors y



Quark Line Diagrams

temporal correlations involving our two-hadron operators need
slice-to-slice quark lines (from all spatial sites on a time slice to all
spatial sites on another time slice)
sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!



Stochastic Estimation of Quark Propagator

Need an approximation on the inverse of the Dirac matrix K[U ]

Use noise vectors η such that E(ηi) = 0 and E(ηiη∗j ) = δij

Z4 = {+1,−1,+i,−i} noise

Generate NR noise vectors η(r) and solve K[U ]X(r) = η(r)

Then E(Xiη
∗
j ) = E(K−1

ik ηkη
∗
j ) = K−1

ik E(ηkη∗j ) = K−1
ij

=⇒ K−1
ij ≈ 1

NR

∑NR
r=1X

(r)
i η

(r)∗
j

Suppose ηj =
∑N
s=1 η

[s]
j , where η[s]

j = ηjδjs (no sum over j), then

∑N
s=1X

[s]
i η

[s]∗
j = K−1

ij ηjη
∗
j = K−1

ij ,

because V ar(ηiη∗j ) = 1− δij



Variance Reduction through Noise Dilution

Introduce a complete set of projection operators P (a):

P (a)P (b) = δabP (a),
∑
a P

(a) = 1, P (a)† = P (a)

η
[a]
k = P

(a)
kk′ηk′ , η

[a]∗
j = P

(a)∗
jj′ η∗j′

Define X [a] to be the solution of KikX
[a]
k = η

[a]
i , then

∑
aE(X [a]

i η
[a]∗
j ) = K−1

ik

∑
aE(η[a]

k η
[a]∗
j ) = K−1

ik

∑
a P

(a)
kj = K−1

ik

=⇒ K−1
ij ≈ 1

NR

∑NR
r=1

∑
aX

(r)[a] η
(r)[a]∗
j

An improvement because V ar(
∑
a η

[a]
k η

[a]∗
j ) < V ar(ηkη∗j )



Laplacian Heaviside (LapH) Smearing

why bother finding
propagator to/from
high energy
modes?

use the Nυ lowest
eigenvectors of the
covariant Laplacian
to define the LapH
subspace
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Excited States from Correlation Matrices

in finite volume, energies are discrete

Cij(t) =
∑
n

Z
(n)
i Z

(n)∗
j e−Ent, Z

(n)
j = 〈0|Oj |n〉

not practical to do fits using above form

define new correlation matrix C̃(t) using a single rotation

C̃(t) = U† C(τ0)−1/2 C(t) C(τ0)−1/2 U

columns of U are eigenvectors of C(τ0)−1/2 C(τD)C(τ0)−1/2

choose τ0 and τD large enough so C̃(t) diagonal for t > τD

effective energies
m̃eff
α (t) = 1

∆t ln
(

C̃αα(t)
C̃αα(t+ ∆t)

)
tend to N lowest-lying stationary state energies in a channel

2-exponential fits to C̃αα(t) yield energies Eα and overlaps Z(n)
j



Operator Smearing and Displacements

Smearing quark
fields reduces the
excited state
contamination

Displacing quark
fields captures
extended structure
of hadrons

Smearing
gauge-link fields
reduces the error
for displaced
operators
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Conclusion

stochastic LapH method works very well
allows evaluation of all needed quark-line diagrams
does so efficiently and with low error

Questions?



Building Blocks for Single-hadron Operators
building blocks: covariantly-displaced LapH-smeared quark fields
stout links Ũj(x)
Laplacian-Heaviside (LapH) smeared quark fields

ψ̃aα(x) = Sab(x, y) ψbα(y), S = Θ
(
σ2
s + ∆̃

)
3d gauge-covariant Laplacian ∆̃ in terms of Ũ
displaced quark fields:

qAaαj = D(j)ψ̃(A)
aα , qAaαj = ψ̃

(A)
aα γ4D

(j)†

displacement D(j) is product of smeared links:

D(j)(x, x′) = Ũj1(x) Ũj2(x+d2) Ũj3(x+d3) . . . Ũjp(x+dp)δx′, x+dp+1

to good approximation, LapH smearing operator is

S = VsV
†
s

columns of matrix Vs are eigenvectors of ∆̃



Extended Operators for Single Hadrons
quark displacements build up orbital, radial structure

ΦABαβ (p, t) =
∑

x e
ip·(x+ 1

2 (dα+dβ))δab q
B
bβ(x, t) qAaα(x, t)

ΦABCαβγ (p, t) =
∑

x e
ip·xεabc q

C
cγ(x, t) qBbβ(x, t) qAaα(x, t)

group-theory projections onto irreps of lattice symmetry group

M l(t) = c
(l)∗
αβ ΦABαβ (t) Bl(t) = c

(l)∗
αβγ ΦABCαβγ (t)

definite momentum p, irreps of little group of p



Two-hadron Operators

our approach: superposition of products of single-hadron operators
of definite momenta

cI3aI3b
paλa; pbλb

BIaI3aSa
paΛaλaia B

IbI3bSb
pbΛbλbib

fixed total momentum p = pa + pb, fixed Λa, ia,Λb, ib
group-theory projections onto little group of p and isospin irreps
restrict attention to certain classes of momentum directions

on axis ±x̂, ±ŷ, ±ẑ

planar diagonal ±x̂± ŷ, ±x̂± ẑ, ±ŷ ± ẑ

cubic diagonal ±x̂± ŷ ± ẑ

efficient creating large numbers of two-hadron operators

generalizes to three, four, . . . hadron operators



Testing our Two-meson Operators

(left) Kπ operator in T1u I = 1
2 channels

(center and right) comparison with localized ππ operators

(ππ)A
+
1g (t) =

∑
x π

+(x, t) π+(x, t),

(ππ)T
+
1u(t) =

∑
x,k=1,2,3

{
π+(x, t) ∆kπ

0(x, t)−π0(x, t) ∆kπ
+(x, t)

}

less contamination from higher states in our ππ operators



Quark Line Estimates in Stochastic LapH

Only need noise vectors in the LapH subspace
ραk(t), t = time, α = spin, k = eigenvector number

dilutions projectors
time indices (full for fixed src, interlace-16 for relative src)
spin indices (full)
LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

each of our quark lines is the product of matrices
Qij = DiSK−1γ4SD†j

displaced-smeared-diluted quark source and quark sink vectors:
%a(ρ) = DjVsP

aρ, ϕa(ρ) = DjSK−1γ4 VsP
aρ

estimate in stochastic LapH by
Qij ≈ 1

NR

∑NR
r=1

∑
a ϕ

(r)[a]
i %j

(r)[a]†



Quantum Numbers in Toroidal Box

periodic boundary conditions in cubic
box

not all directions equivalent ⇒
using JPC is wrong!!

label stationary states of QCD in a periodic box using irreps of cubic
space group even in continuum limit

zero momentum states: little group Oh

A1a, A2ga, Ea, T1a, T2a, G1a, G2a, Ha, a = g, u

on-axis momenta: little group C4v

A1, A2, B1, B2, E, G1, G2

planar-diagonal momenta: little group C2v

A1, A2, B1, B2, G1, G2

cubic-diagonal momenta: little group C3v

A1, A2, E, F1, F2, G

include G parity in some meson sectors (superscript + or −)



Spin Content of Cubic Box Irreps

numbers of occurrences of Λ irreps in subduced reps of SO(3)
restricted to O

J A1 A2 E T1 T2 J G1 G2 H

0 1 0 0 0 0 1
2 1 0 0

1 0 0 0 1 0 3
2 0 0 1

2 0 0 1 0 1 5
2 0 1 1

3 0 1 0 1 1 7
2 1 1 1

4 1 0 1 1 1 9
2 1 0 2

5 0 0 1 2 1 11
2 1 1 2

6 1 1 1 1 2 13
2 1 2 2

7 0 1 1 2 2 15
2 1 1 3



Common Hadrons

What hadrons will appear in the different irreps at rest?

Hadron Irrep Hadron Irrep

π A−1u K1 T1g

ρ T+
1u Λ, Ξ G1g

a0 A+
1g η, η′ A+

1u

b1 T+
1g K∗ T1u

N , Σ G1g h1 T−1g

K A1u π1 T−1u

ω, φ T−1u ∆, Ω Hg

f0 A+
1g



Ensembles and Run Parameters

plan to use three Monte Carlo ensembles
(323|240): 412 configs 323 × 256, mπ ≈ 240 MeV, mπL ∼ 4.4
(243|240): 584 configs 243 × 128, mπ ≈ 240 MeV, mπL ∼ 3.3
(243|390): 551 configs 243 × 128, mπ ≈ 390 MeV, mπL ∼ 5.7

anisotropic improved gluon action, clover quarks (stout links)

QCD coupling β = 1.5 such that as ∼ 0.12 fm, at ∼ 0.035 fm

strange quark mass ms = −0.0743 nearly physical (using kaon)

work in mu = md limit so SU(2) isospin exact

generated using RHMC, configs separated by 20 trajectories

stout-link smearing in operators ξ = 0.10 and nξ = 10
LapH smearing cutoff σ2

s = 0.33 such that
Nv = 112 for 243 lattices
Nv = 264 for 323 lattices
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