Lattice QCD with the Stochastic LapH

 MethodAndrew D. Hanlon
University of Pittsburgh

Overview

\square Calculating temporal correlators in lattice QCD requires inverting the large but sparse Dirac matrix.
\square We can exploit translation invariance for single hadron operators to fix the position of the source hadron in 2-point correlators (point-to-all method).
\square But, isoscalar mesons and two-hadron operators present a serious challenge (require all-to-all or many-to-many quark propagators).
\square The stochastic LapH method is an efficient method for approximating these quark propagators.

Temporal Correlators from Path Integrals

\square stationary-state energies are extracted from $N \times N$ Hermitian correlation matrix

$$
C_{i j}(t)=\langle 0| O_{i}\left(t+t_{0}\right) \bar{O}_{j}\left(t_{0}\right)|0\rangle
$$

\square correlators found from path integral over $\psi, \bar{\psi}$ and U fields

$$
C_{i j}(t)=\frac{\int D[\bar{\psi}, \psi, U] O_{i}\left(t+t_{0}\right) \bar{O}_{j}\left(t_{0}\right) \exp \left(-\bar{\psi} K[U] \psi-S_{G}[U]\right)}{\int D[\bar{\psi}, \psi, U] \exp \left(-\bar{\psi} K[U] \psi-S_{G}[U]\right)}
$$

$\square K[U]$ is the fermion Dirac matrix
\square integration over quarks can be done exactly

$$
\int D[\bar{\psi}, \psi] F[\bar{\psi}, \psi] \exp (-\bar{\psi} K \psi)=W\left[K^{-1}(U)\right] \operatorname{det} K
$$

Monte Carlo Estimate of Path Integrals

\square correlators now have the following form

$$
C_{i j}(t)=\frac{\int D[U] \operatorname{det} K W\left[K^{-1}(U)\right] \exp \left(-S_{G}[U]\right)}{\int D[U] \operatorname{det} K \exp \left(-S_{G}[U]\right)}
$$

\square use Monte Carlo methods to integrate over U
\square generate set of gauge configurations $\left\{U_{i}\right\}$ according to

$$
P[U]=\frac{\exp \left(-S_{G}[U]\right) \prod_{j=1}^{N_{f}} \operatorname{det} K_{j}[U]}{\mathcal{Z}}
$$

$\square \gamma_{5}$-Hermiticity of K guarantees $\operatorname{det} K$ is real, and $m_{u}=m_{d}$ makes $\operatorname{det} K_{u}=\operatorname{det} K_{d}$
$\square \operatorname{det} K_{s}$ is not guaranteed to be positive, but it usually is
\square inclusion of det K and evaluation of $K^{-1}[U]$ are computationally expensive

Quark Propagation

\square quark propagator is inverse K^{-1} of Dirac matrix
\square rows/columns involve lattice site, spin, color
\square very large $N_{\text {tot }} \times N_{\text {tot }}$ matrix for each flavor

$$
N_{\text {tot }}=N_{\text {site }} N_{\text {spin }} N_{\text {color }}
$$

\square for $32^{3} \times 256$ lattice, $N_{\text {tot }} \sim 101$ million
\square not feasible to compute (or store) all elements of K^{-1}solve linear systems $K x=y$ for source vectors y
\square translation invariance can drastically reduce number of source vectors y neededmulti-hadron operators and isoscalar mesons require large number of source vectors y

Quark Line Diagrams

\square temporal correlations involving our two-hadron operators need
\square slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
\square sink-to-sink quark lines

\square isoscalar mesons also require sink-to-sink quark lines
solution: the stochastic LapH method!

Stochastic Estimation of Quark Propagator

\square Need an approximation on the inverse of the Dirac matrix $K[U]$
\square Use noise vectors η such that $E\left(\eta_{i}\right)=0$ and $E\left(\eta_{i} \eta_{j}^{*}\right)=\delta_{i j}$
$\square Z_{4}=\{+1,-1,+i,-i\}$ noise
\square Generate N_{R} noise vectors $\eta^{(r)}$ and solve $K[U] X^{(r)}=\eta^{(r)}$
\square Then $E\left(X_{i} \eta_{j}^{*}\right)=E\left(K_{i k}^{-1} \eta_{k} \eta_{j}^{*}\right)=K_{i k}^{-1} E\left(\eta_{k} \eta_{j}^{*}\right)=K_{i j}^{-1}$

$$
\Longrightarrow K_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} X_{i}^{(r)} \eta_{j}^{(r) *}
$$

\square Suppose $\eta_{j}=\sum_{s=1}^{N} \eta_{j}^{[s]}$, where $\eta_{j}^{[s]}=\eta_{j} \delta_{j s}$ (no sum over j), then

$$
\sum_{s=1}^{N} X_{i}^{[s]} \eta_{j}^{[s] *}=K_{i j}^{-1} \eta_{j} \eta_{j}^{*}=K_{i j}^{-1}
$$

because $\operatorname{Var}\left(\eta_{i} \eta_{j}^{*}\right)=1-\delta_{i j}$

Variance Reduction through Noise Dilution

\square Introduce a complete set of projection operators $P^{(a)}$:

$$
\begin{aligned}
& P^{(a)} P^{(b)}=\delta^{a b} P^{(a)}, \quad \sum_{a} P^{(a)}=1, \quad P^{(a) \dagger}=P^{(a)} \\
& \eta_{k}^{[a]}=P_{k k^{\prime}}^{(a)} \eta_{k^{\prime}}, \quad \eta_{j}^{[a] *}=P_{j j^{\prime}}^{(a) *} \eta_{j^{\prime}}^{*}
\end{aligned}
$$

\square Define $X^{[a]}$ to be the solution of $K_{i k} X_{k}^{[a]}=\eta_{i}^{[a]}$, then

$$
\begin{gathered}
\sum_{a} E\left(X_{i}^{[a]} \eta_{j}^{[a] *}\right)=K_{i k}^{-1} \sum_{a} E\left(\eta_{k}^{[a]} \eta_{j}^{[a] *}\right)=K_{i k}^{-1} \sum_{a} P_{k j}^{(a)}=K_{i k}^{-1} \\
\Longrightarrow K_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{a} X^{(r)[a]} \eta_{j}^{(r)[a] *}
\end{gathered}
$$

\square An improvement because $\operatorname{Var}\left(\sum_{a} \eta_{k}^{[a]} \eta_{j}^{[a] *}\right)<\operatorname{Var}\left(\eta_{k} \eta_{j}^{*}\right)$

Laplacian Heaviside (LapH) Smearing

\square why bother finding propagator to/from high energy
modes?
\square use the N_{v} lowest eigenvectors of the covariant Laplacian to define the LapH subspace

Excited States from Correlation Matrices

in finite volume, energies are discrete$$
C_{i j}(t)=\sum_{n} Z_{i}^{(n)} Z_{j}^{(n) *} e^{-E_{n} t}, \quad Z_{j}^{(n)}=\langle 0| O_{j}|n\rangle
$$

\square not practical to do fits using above form
\square define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$
\widetilde{C}(t)=U^{\dagger} C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2} U
$$

\square columns of U are eigenvectors of $C\left(\tau_{0}\right)^{-1 / 2} C\left(\tau_{D}\right) C\left(\tau_{0}\right)^{-1 / 2}$choose τ_{0} and τ_{D} large enough so $\widetilde{C}(t)$ diagonal for $t>\tau_{D}$
\square effective energies

$$
\widetilde{m}_{\alpha}^{\mathrm{eff}}(t)=\frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha \alpha}(t)}{\widetilde{C}_{\alpha \alpha}(t+\Delta t)}\right)
$$

tend to N lowest-lying stationary state energies in a channel
\square 2-exponential fits to $\widetilde{C}_{\alpha \alpha}(t)$ yield energies E_{α} and overlaps $Z_{j}^{(n)}$

Operator Smearing and Displacements

\square Smearing quark fields reduces the excited state contamination
\square Displacing quark fields captures extended structure of hadrons
\square Smearing gauge-link fields reduces the error for displaced operators

Conclusion

stochastic LapH method works very well
\square allows evaluation of all needed quark-line diagrams
\square does so efficiently and with low error

Questions?

Building Blocks for Single-hadron Operators

\square building blocks: covariantly-displaced LapH-smeared quark fields
\square stout links $\widetilde{U}_{j}(x)$
\square Laplacian-Heaviside (LapH) smeared quark fields

$$
\widetilde{\psi}_{a \alpha}(x)=\mathcal{S}_{a b}(x, y) \psi_{b \alpha}(y), \quad \mathcal{S}=\Theta\left(\sigma_{s}^{2}+\widetilde{\Delta}\right)
$$

\square 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
\square displaced quark fields:

$$
q_{a \alpha j}^{A}=D^{(j)} \widetilde{\psi}_{a \alpha}^{(A)}, \quad \bar{q}_{a \alpha j}^{A}=\widetilde{\bar{\psi}}_{a \alpha}^{(A)} \gamma_{4} D^{(j) \dagger}
$$

\square displacement $D^{(j)}$ is product of smeared links:

$$
D^{(j)}\left(x, x^{\prime}\right)=\widetilde{U}_{j_{1}}(x) \widetilde{U}_{j_{2}}\left(x+d_{2}\right) \widetilde{U}_{j_{3}}\left(x+d_{3}\right) \ldots \widetilde{U}_{j_{p}}\left(x+d_{p}\right) \delta_{x^{\prime}, x+d_{p+1}}
$$

\square to good approximation, LapH smearing operator is

$$
\mathcal{S}=V_{s} V_{s}^{\dagger}
$$

\square columns of matrix V_{s} are eigenvectors of $\widetilde{\Delta}$

Extended Operators for Single Hadrons

\square quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations

$$
\begin{aligned}
\bar{\Phi}_{\alpha \beta}^{A B}(\boldsymbol{p}, t) & =\sum_{\boldsymbol{x}} e^{i \boldsymbol{p} \cdot\left(\mathbf{x}+\frac{1}{2}\left(\boldsymbol{d}_{\alpha}+\boldsymbol{d}_{\beta}\right)\right)} \delta_{a b} \bar{q}_{b \beta}^{B}(\boldsymbol{x}, t) q_{a \alpha}^{A}(\boldsymbol{x}, t) \\
\bar{\Phi}_{\alpha \beta \gamma}^{A B C}(\boldsymbol{p}, t) & =\sum_{\boldsymbol{x}} e^{i \boldsymbol{p} \cdot \mathbf{x}} \varepsilon_{a b c} \bar{q}_{c \gamma}^{C}(\boldsymbol{x}, t) \bar{q}_{b \beta}^{B}(\boldsymbol{x}, t) \bar{q}_{a \alpha}^{A}(\boldsymbol{x}, t)
\end{aligned}
$$

\square group-theory projections onto irreps of lattice symmetry group

$$
\bar{M}_{l}(t)=c_{\alpha \beta}^{(l) *} \bar{\Phi}_{\alpha \beta}^{A B}(t) \quad \bar{B}_{l}(t)=c_{\alpha \beta \gamma}^{(l) *} \bar{\Phi}_{\alpha \beta \gamma}^{A B C}(t)
$$

definite momentum p, irreps of little group of p

Two-hadron Operators

\square our approach: superposition of products of single-hadron operators of definite momenta

$$
c_{\boldsymbol{p}_{a} \lambda_{a} ; \boldsymbol{p}_{b} \lambda_{b}}^{I_{3 a} I_{3 b}} B_{\boldsymbol{p}_{a} \Lambda_{a} \lambda_{a} i_{a}}^{I_{a} I_{a} S_{a}} B_{\boldsymbol{p}_{b} \Lambda_{b} \lambda_{b} i_{b}}^{I_{b} I_{I_{b}} S_{b}}
$$

\square fixed total momentum $\boldsymbol{p}=\boldsymbol{p}_{a}+\boldsymbol{p}_{b}$, fixed $\Lambda_{a}, i_{a}, \Lambda_{b}, i_{b}$
\square group-theory projections onto little group of p and isospin irreps
\square restrict attention to certain classes of momentum directions
\square on axis $\pm \widehat{x}, \pm \widehat{\boldsymbol{y}}, \pm \widehat{\boldsymbol{z}}$
\square planar diagonal $\pm \widehat{x} \pm \widehat{y}, \pm \widehat{x} \pm \widehat{z}, \pm \widehat{y} \pm \widehat{z}$
\square cubic diagonal $\pm \widehat{x} \pm \widehat{y} \pm \widehat{z}$
\square efficient creating large numbers of two-hadron operators
\square generalizes to three, four, . . . hadron operators

Testing our Two-meson Operators

\square (left) $K \pi$ operator in $T_{1 u} I=\frac{1}{2}$ channels
\square (center and right) comparison with localized $\pi \pi$ operators

$$
\begin{aligned}
(\pi \pi)^{A_{1 g}^{+}}(t) & =\sum_{\boldsymbol{x}} \pi^{+}(\boldsymbol{x}, t) \pi^{+}(\boldsymbol{x}, t), \\
(\pi \pi)^{T_{1 u}^{+}}(t) & =\sum_{\boldsymbol{x}, k=1,2,3}\left\{\pi^{+}(\boldsymbol{x}, t) \Delta_{k} \pi^{0}(\boldsymbol{x}, t)-\pi^{0}(\boldsymbol{x}, t) \Delta_{k} \pi^{+}(\boldsymbol{x}, t)\right\}
\end{aligned}
$$

\square less contamination from higher states in our $\pi \pi$ operators

Quark Line Estimates in Stochastic LapH

\square Only need noise vectors in the LapH subspace

$$
\rho_{\alpha k}(t), \quad t=\text { time }, \alpha=\text { spin, } k=\text { eigenvector number }
$$

\square dilutions projectors
\square time indices (full for fixed src, interlace-16 for relative src)
\square spin indices (full)
\square LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)
\square each of our quark lines is the product of matrices

$$
Q_{i j}=D_{i} \mathcal{S} K^{-1} \gamma_{4} \mathcal{S} D_{j}^{\dagger}
$$

\square displaced-smeared-diluted quark source and quark sink vectors:

$$
\varrho^{a}(\rho)=D_{j} V_{s} P^{a} \rho, \quad \varphi^{a}(\rho)=D_{j} \mathcal{S} K^{-1} \gamma_{4} V_{s} P^{a} \rho
$$

\square estimate in stochastic LapH by

$$
Q_{i j} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{a} \varphi_{i}^{(r)[a]} \varrho_{j}^{(r)[a] \dagger}
$$

Quantum Numbers in Toroidal Box

\square periodic boundary conditions in cubic box
\square not all directions equivalent \Rightarrow using $J^{P C}$ is wrong!!

\square label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
\square zero momentum states: little group O_{h}

$$
A_{1 a}, A_{2 g a}, E_{a}, T_{1 a}, T_{2 a}, \quad G_{1 a}, G_{2 a}, H_{a}, \quad a=g, u
$$

\square on-axis momenta: little group $C_{4 v}$

$$
A_{1}, A_{2}, B_{1}, B_{2}, E, \quad G_{1}, G_{2}
$$

\square planar-diagonal momenta: little group $C_{2 v}$

$$
A_{1}, A_{2}, B_{1}, B_{2}, \quad G_{1}, G_{2}
$$

\square cubic-diagonal momenta: little group $C_{3 v}$

$$
A_{1}, A_{2}, E, \quad F_{1}, F_{2}, G
$$

\square include G parity in some meson sectors (superscript + or -)

Spin Content of Cubic Box Irreps

\square numbers of occurrences of Λ irreps in subduced reps of $S O(3)$ restricted to O

J	A_{1}	A_{2}	E	T_{1}	T_{2}	J	G_{1}	G_{2}	H
0	1	0	0	0	0	$\frac{1}{2}$	1	0	0
1	0	0	0	1	0	$\frac{3}{2}$	0	0	1
2	0	0	1	0	1	$\frac{5}{2}$	0	1	1
3	0	1	0	1	1	$\frac{7}{2}$	1	1	1
4	1	0	1	1	1	$\frac{9}{2}$	1	0	2
5	0	0	1	2	1	$\frac{11}{2}$	1	1	2
6	1	1	1	1	2	$\frac{13}{2}$	1	2	2
7	0	1	1	2	2	$\frac{15}{2}$	1	1	3

Common Hadrons

\square What hadrons will appear in the different irreps at rest?

Hadron	Irrep	Hadron	Irrep
π	$A_{1 u}^{-}$	K_{1}	$T_{1 g}$
ρ	$T_{1 u}^{+}$	Λ, Ξ	$G_{1 g}$
a_{0}	$A_{1 g}^{+}$	η, η^{\prime}	$A_{1 u}^{+}$
b_{1}	$T_{1 g}^{+}$	K^{*}	$T_{1 u}$
N, Σ	$G_{1 g}$	h_{1}	$T_{1 g}^{-}$
K	$A_{1 u}$	π_{1}	$T_{1 u}^{-}$
ω, ϕ	$T_{1 u}^{-}$	Δ, Ω	H_{g}
f_{0}	$A_{1 g}^{+}$		

Ensembles and Run Parameters

\square plan to use three Monte Carlo ensembles
$\square\left(32^{3} \mid 240\right): 412$ configs $32^{3} \times 256, \quad m_{\pi} \approx 240 \mathrm{MeV}, \quad m_{\pi} L \sim 4.4$
$\square\left(24^{3} \mid 240\right): 584$ configs $24^{3} \times 128, \quad m_{\pi} \approx 240 \mathrm{MeV}, \quad m_{\pi} L \sim 3.3$
$\square\left(24^{3} \mid 390\right): 551$ configs $24^{3} \times 128, \quad m_{\pi} \approx 390 \mathrm{MeV}, \quad m_{\pi} L \sim 5.7$
\square anisotropic improved gluon action, clover quarks (stout links)
\square QCD coupling $\beta=1.5$ such that $a_{s} \sim 0.12 \mathrm{fm}, a_{t} \sim 0.035 \mathrm{fm}$
\square strange quark mass $m_{s}=-0.0743$ nearly physical (using kaon)
\square work in $m_{u}=m_{d}$ limit so $S U(2)$ isospin exact
\square generated using RHMC, configs separated by 20 trajectories
\square stout-link smearing in operators $\xi=0.10$ and $n_{\xi}=10$
$\square \mathrm{LapH}$ smearing cutoff $\sigma_{s}^{2}=0.33$ such that
$\square N_{v}=112$ for 24^{3} lattices
$\square N_{v}=264$ for 32^{3} lattices

